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The mechanical characteristics of an underground explosion can be controlled by changing 
the conditions under which the explosion takes place. There are various methods of influenc- 
ing the characteristics of the explosion process. The authors of [i, 2] discussed the formu- 
lation and solution of the corresponding problems for the case when an underground explosion 
is carried out in a radially nonuniform medium. It was noted that radial nonuniformity may 
be created around a charge by inundation of the porous medium near the charge. If the medium 
to be flooded is first broken up by an auxiliary explosion, then after all of the cavities 
in the thus-fractured medium have been filled with the liquid (water, for example), it can 
be asserted that the medium will not be subject to shear stresses and that its stress state 
will be completely characterized by assigning the pressure. The expansion of a blasthole 
in a radially nonuniform medium was studied in [i, 2], but the characteristics of the shock 
wave were not calculated. Another method of controlling the mechanical characteristics of 
an explosion is surrounding the charge with a spherical interlayer of a porous material. An 
experimental and theoretical study was made in [3] of the explosion of a charge surrounded 
by a spherically symmetric plastic-foam interlayer; water was used as the medium. Finally, 
yet another method of controlling the effect of an explosion is to change the density of 
charging of the explosive. This is easily done in practice. 

Here we give most of our attention to the effect of the conditions under which an under- 
ground explosion is carried out on the elastic characteristics of the explosion. We calcu- 
late the parameters of the elastic wave in an explosion in a radially nonuniform elastoplas- 
tic medium for the cases when the charge is surrounded by a flooded medium or a highly porous 
shell. Results are presented from calculation of the seismic efficiency of an underground 
explosion for different charging densities. 

Explosion ~n a Flooded Medium 

We will examine a spherically symmetric formulation of the problem. Let there be a ca- 
vity of radius a 0 containing gas at the pressure P0 at the initial moment of time. The quan- 
tity 7 is the adiabatic exponent of the gas in the cavity. At t > 0, a shock wave (SW) be- 
gins to propagate from the wall of the cavity into the surrounding medium. The medium in 
which the explosion takes place is radially nonuniform. In the region r < b 0 (b 0 is the radius 
of the prefractured and flooded medium), the shear stresses are equal to zero. At r < b0, 
the substance at the SW front is irreversibly compressed from the density P0 to the density 
Pl. This compaction, characterized by the parameter sl = i - P0/Pl, may be connected with 
the closure of cavities left after flooding of the fractured zone. In the region r < b0, 
the following mass and momentum conservation conditions are satisfied at the SW front 

u(R) = ~l~(t), p(R) = ~lp0~(t) + ph. (1 )  

Here, R(t) is the radius of the SW front; Ph is the background pressure; u(R) is the mass 
velocity of the medium behind the front. Considering the medium behind the front to be in- 
compressible, we have 

p~(Ou/Ot ~ u Ou/Or) = - -ap/Or,  O(rZu)/ar = 0 (2) 

(u is the velocity of the medium, p is pressure). It follows from the second equation of 
(2) that 

u = aaf /r  ~ ( 3 )  

( a  i s  t he  r a d i u s  of  t he  e x p l o s i o n  c a v i t y ) .  
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Substitute (3) into Eq. (2) and by integration we get the profile of the pressure in the 

flooding region (for r < b0) 

p ( r ,  t ) :  T ( t ) - ~  Pl ( a2a 
2a'a 2 

2r 4 ] ': 
(4) 

We can easily find 9 (t) by using the condition of adiabatic expansion of the cavity: 

(t) = Po (ao/a) av - -  P~ (ea" + 3 ~ / 2 ) .  ( 5 )  

Equations (4) and (5), together with Eqs. (i), make it possible to find an equation to 

determine a(t) 

Pl t - -  aa = Po --  P~a2 2 R 2e 1 \R ] J" ( 6 )  

Equation (6) is augmented by the well-known relation between R and a: R = [a 3 - (i - El)" 
0311/3r -I/3, as well as by the initial conditions e(0) = a 0, ~(0) = /r it describes 

the expansion of the cavity until the SW reaches the boundary of the flooded zone, i.e., to 

the moment of time t I determined by the condition 

R (t~) = bo. ( 7 )  

After the shock wave reaches the boundary of the flooded zone, it continues to propagate. 
It now propagates in a medium having shear resistance. In this medium (in the region r > 
b0) , we use the description developed in [4]. We assume that, in the region r > b 0, the medium 
is compacted at the front from P2o to p=. The compaction is characterized by the parameter 

e 2 = 1 - P20/P2- We also assume that the medium is fractured at the front and that the flow 
of the fractured medium is described by the plasticity condition �9 = kp + m [~ = o r - o~, 
p = -(o r + 2o~)/3, k and m being constants and o r and o~ being components of the stress ten- 
sor] and the equation for volumetric strains of a medium with allowance for dilatation: 

8u/Sr + 2u/r = A{Su/~r -- u/r{ (A is the dilatation rate). 

We equate the pressure and the radial stresses, respectively, at the boundary b = b(b 0, 
t) - the moving interface between the flooded zone and the zone with strength properties. 

Then, with allowance for the conditions at the shock front, we obtain 

(, ,o , a ' . ,  

o$ 

$2P20 
2 - -  A 6m n = i---+"A' cr ---- l---+- '~- '  b = [(1 - -  e2) bo + l  + e~Rn+i ]  i / (n+i) ,  

1 

(bo - -  ao)  Oo = ( b8 - -  a3) Pl, A (y) ---- ( s) ds, 
Y 

1 
F (y) ---~ s 2 S 82(I)q'-2n-3 (z) Us 

1/y 

( 8 )  

where (@ = @(s) is the relation between the Eulerian and Lagrangian coordinates [4]). Equa- 
tion (8) is valid from the moment of time tl, determined from (7), to the moment t= - which 
is found from the condition R(t=) = cs cs is the velocity of the longitudinal elastic 
waves. When the velocity of the front R(t) becomes equal to cs the elastic wave begins to 
overtake the shock front. Here, the medium continues to fracture at the shock front. 

All of the elestic displacements f(g) [g = t - t 2 - (r - R=/c s E 2 = R(t2) is the radius 

from which elastic energy begins to be generated]. 

The presence of the elastic wave affects the motion of the shock front. The conditions 

on the front take the form 

(R) - n = ~,o ( ~  - h ) / ,o , ,  o ,  (n)  = o , e -  ~,f,,o ( ~  - h ) ' .  
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Here, u(R) and or(R) are the mass velocity and the radial stress in the shock front; v e and 
ore are the mass velocity and radial stress in the elastic wave. Now we can obtain an equa- 
tion for a(t) with allowance for the radiation of the elastic wave: 

b 0' n+l -r 1) 2 

(@ )' [(;) (;)]1 q- P~082 q- ~ - -  R am ~ A __ RR + nR 2 A - -  F ; 

R 0~0c~ 1 - ,  ( 1 0 )  

( o ,  i s  t h e  c r u s h i n g  s t r e n g t h ;  v i s  t h e  P o i s s o n  r a t i o ) .  Thus,  Eqs.  (6 )  and ( 8 ) - ( 1 0 )  g i v e  a 
c o m p l e t e  d e s c r i p t i o n  o f  t h e  mo t ion  o f  a r a d i a l l y  n o n u n i f o r m  medium w i t h  a l l o w a n c e  f o r  t h e  
r a d i a t i o n  o f  t h e  e l a s t i c  wave. 

At t s t 1, we s o l v e  Eq. ( 6 ) .  At t z <_ t -< t 2, t h e  s o l u t i o n  i s  g i v e n  by Eq. ( 8 ) .  At 
t > t 2 ,  Eqs.  (9 )  and (10)  must  be s o l v e d .  The e q u a t i o n s  were  i n t e g r a t e d  n u m e r i c a l l y .  F i g u r e  
1 shows t h e  dependence  o f  t h e  r a d i a t e d  s e i s m i c  e n e r g y  e ,  c a l c u l a t e d  f rom t h e  f o r m u l a  e = 

c o  

on the corrected flooding radius bo/a o for the following initial data= Ph = 
c I 

0 

22 MPa, cs = 3500 m/sec, k = 15 MPa, m = 0.5, v = 0.3, e I = 0.01, s2 = 0.25. 

In Fig. I, energy is in units of radiant energy for the uniform case, when there is no 
flooded zone with diminished strength properties (b 0 = a0). It is evident that the relation 
e(b0/a0) is nonmonotonic in character. Flooding of the region around the charge leads to 
a situation whereby the shock wave decays more slowly than in the unflooded medium - since 
the flooded medium has no shear strength and no energy is dissipated in the course of plastic 
flow. As a result, high values of stress are propagated large distances, so that there is 
an increase in the size of the effective elastic radiator and the radiated elastic energy. 
When the radius of the flooded zone is large, an SW passing through it is weakened due to 
dissipation occurring as a result of pore collapse. Thus, the resulting elastic wave is 
weaker. 

Figure 2 shows the dependence of the residual strains w (referred to the residual strains 
w 0 at b 0 = a 0) on b0/a 0 at a certain distance from the center of the explosion (curve I). 
An increase in the flooding radius is accompanied by a reduction in the fraction of energy 
dissipated at the shock front with compaction of the medium compared to the case of an un- 
flooded medium. This reduction is connected with less compaction in the flooded medium 
(el < s2). In this case, there is an increase in the amount of energy transmitted by the 
unflooded medium - which in turn leads to an increase in the residual strains. Curve 2 sho 
the dependence of the final radius of the cavity on the flooding radius. 

Explosion of a Charge Surrounded by a Porous Interlayer 

The effect of a porous interlayer around the charge on the mechanical effect of an ex- 
plosion is determined by the character of propagation of the blast waves in porous media. 
In a highly porous substance, a substantial portion of the energy of the SW is converted to 
internal energy of the medium. When this energy is sufficient for vaporization of the sub- 
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stance, the medium is vaporized behind the front and the peak pressure at the front is greater 
than in the case when the medium is not vaporized. This feature of the effect of high poro- 
sity of the medium on SW propagation is characteristic of the near region of the explosion, 
where the medium is vaporized as the wave passes through the front. Later, when the sub- 
stance on the front is not vaporized, a significant amount of the energy dissipated at the 
front is converted to internal energy of the solid phase of the medium - which does not con- 
tribute to pressure. At this stage of the explosion, the high level of energy dissipation 
at the front leads to rapid decay with increasing distance from the stress center on the front. 

A typical feature of the explosion of a charge of a chemical explosive is the relatively 
low volumetric concentration of energy given off during the explosion. This makes it possible 
to realistically assume that in performing laboratory explosions in high-porosity substances, 
the effect of the latter amounts to weakening of the explosive effect with neglect of the 
vaporization phenomenon. 

Let an explosion cavity of radius a0, surrounded by a spherical shell of a high-porosity 
material, be filled by gases with the pressure P0. A spherical SW propagates from the walls 
of the cavity, and the substance is compact at the front due to collapse of pores. It is 
assumed that the porosity of the material of the shell (the volumetric fraction of pores) 
is so great that the width of the post-front layer of compacted substance is small compared 
to the radius of the shock front. The equation of motion of the medium behind the front is 
written as follows in Lagrangian coordinates with allowance for the strength properties: 

I o(o (r l P0r~ 7t  Or o [ 

I n t e g r a t i o n  o f  t h i s  e q u a t i o n  wi th  a l lowance  f o r  boundary c o n d i t i o n s  (1)  and the  c o n t i n u i t y  
equation (2) yields 

R 

! t? ~ ~ R -!- aZ'p (a) + ( B c~ - -  a s )  l~'/(3rn) = p~r~dr. * (12) 

We find the value of p6 similarly to [5], from the law of motion of the thin layer of com- 
pacted substance 

d--{d ( M u ) - -  J ~ [ - ~ ( R a - - a a ) p u ]  = 4 g a 2 p ( a ) '  (13) 

where M is the mass of the layer; p = p0/(l - m 0) is the density of the compressed substance; 
u is its mass velocity; m 0 is the initial porosity; R is the radius of the shock front; a(t) 
is the running radius of the cavity; k and m are the adhesion and friction coefficients; ~ = 
6m!2m + i). Assuming that the product p6 is constant along the radius in the thin layer, 
we find from (11)-(13) that 

z 3 -- i -- 3 (z ~+I -- I)/(i + ~) 

~ ( R ) =  - p (a) ~ ( ~  _ t)  - 3~ ~ ( ~ + ~  - 1)/{~ + t} 

k ( t  - z - ~ ) / ( 3 ~ )  ( 1 4 )  

t - 3 ?  ( t  - ~ - ~ - 1 )  (~  + t ) - , ( ~ 3  _ t ) - 1  

(z = R / a ) .  I t  should  be no ted  t h a t  in  t he  nea r  zone o f  the  e x p l o s i o n  (and f o r  a g r a n u l a r  
substance with negligibly weak bonding and for all values of R), the second term in Eq. (14) 
can be ignored. In contrast to the solution reported in [5] - where it was assumed that 
p(a) = p(R)/2 at any moment of time, in Eq. (14) the proportionality factor between the indi- 
cated quantities depends on the ratio R/a and the coefficient of internal friction. The re- 
sulting solution is valid up to the moment the SW reaches the boundary separating the highly 
porous shell and the surrounding medium. In the present study, the propagation of the SW 
in the medium was described by a model of a porous, incompressible, variably compacted dilata- 
ting medium [6]. Solutions were also found for the problem of the radiation of elastic waves 
both from the moving front of a fracture wave and after its stoppage [7]. To join these solu- 
tions, use was made of the condition of continuity of the radial stress at the shock front 
during its passage across the shell-medium boundary. 

Calculations corresponding to the results presented below were performed for an explo- 
sion in rocksalt of 2.2 g/cm 3 density. The density of the solid phase of the shell material 

*As appears in Russian original -- Editor. 
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was 2.5 g/cm s. Figure 3 shows the dependence of the seismic efficiency of the explosion, 
i.e., the fraction of explosive energy radiated to infinity in the form of elastic waves, 
on the radius R 0 of the high-porosity shell surrounding the charge (the porosity of the shell 
material m 0 = 0.65, 0.8, 0.95 - lines 1-3). The radius of the charge was 5 cm/kg I/s. As 
shown by the calculations, the weakening of the seismic activity of the explosion due to the 
surrounding of the charge by the porous shell is proportional to the thickness of this shell 
and the porosity of its material. It follows from the mass conservation condition that a s - 
(i - m0)a s = m0R 3, where a 0 is the initial radius of the charge, a(t) is the radius of the 
explosion cavity, and R is the radius of the shock front. In our case, the second term in 
the given expression can be ignored. Also, if the shell is composed of a powdery material 
in which there is no bonding between particles, we can ignore the second term in Eq. (14). 
Here, the following expression is valid for the radial stresses at the shock front: 

~(R) = - p  ff)K(~0, ~) (15) 

[K(m0, a )  i s  a f u n c t i o n  o f  m 0 and a ] .  

For  a d i a b a t i c  e x p a n s i o n  o f  t h e  d e t o n a t i o n  p r o d u c t s  o r ( R )  ~ m0-XR-3X (X i s  t h e  a d i a b a t i c  
e x p o n e n t  o f  t h e  g a s e o u s  d e t o n a t i o n  p r o d u c t s ) .  I t  i s  e v i d e n t  t h a t  when t h e  SW p a s s e s  t h r o u g h  
t h e  s h e l l  s u r r o u n d i n g  t h e  c h a r g e ,  t h e  s t r e s s e s  on t h e  f r o n t  d e c a y  more r a p i d l y  t h a n  in  s o l i d  
media  - f o r  which  t h e  e x p o n e n t  in  t h e  s t r e s s  d e c a y  law i s  w i t h i n  t h e  r a n g e  1 . 8 - 3 . 3 .  

F i g u r e  4 i l l u s t r a t e s  t h e  d e p e n d e n c e  o f  t h e  s e i s m i c  a c t i v i t y  o f  t h e  e x p l o s i o n  on t h e  po-  
r o s i t y  o f  a s h e l l  m a t e r i a l  o f  f i x e d  r a d i u s  e q u a l  t o  7 .5  cm/kg 1 /3 .  T h i s  r e s u l t  shows t h a t  
r a p i d  d e c a y  o f  shock  waves  in  h i g h - p o r o s i t y  s h e l l s  l e a d s  t o  more e f f e c t i v e  s h i e l d i n g  f rom 
t h e  e x p l o s i v e  and s e i s m i c  e f f e c t s .  

E q u a t i o n  ( 1 5 ) ,  w i t h  a l l o w a n c e  f o r  t h e  r e l a t i o n  be tween  a and R, makes  i t  p o s s i b l e  t o  
d e t e r m i n e  t h e  s h e l l  r a d i u s  R , ,  a t  which  f r a c t u r e  w i l l  be a b s e n t  i n  t h e  s u r r o u n d i n g  medium. 
I f  o ,  i s  t h e  c r u s h i n g  s t r e n g t h  o f  t h e  medium, t h e n  t h e  s o u g h t  r e l a t i o n  i s  w r i t t e n  in  t h e  fo rm 
o... = p o ( a o / a ) ~ X m o - X K ( m o ,  ~ ) ,  where  K(m0, a )  i s  t h e  f i r s t  t e r m  in  Eq. (14)  w i t h  t h e  a s s u m p t i o n  
t h a t  z = R /a  = m0 - z / s .  Thus ,  f o r  R.,. we can  u s e  t h e  e x p r e s s i o n  R,  = a0[K(m0,  a ) p o / ( m o Y o , ] z / 3 Y  
(P0 i s  t h e  i n i t i a l  p r e s s u r e  o f  t h e  g a s e o u s  d e t o n a t i o n  p r o d u c t s ) .  The d e p e n d e n c e  o f  R,  on m 0 
i s  shown in  F i g .  5. T h i s  r e s u l t  i s  in  a g r e e m e n t  w i t h  t h e  p r e v i o u s  r e s u l t s :  an i n c r e a s e  in  
p o r o s i t y  i s  a c c o m p a n i e d  by an i n c r e a s e  in  t h e  r a t e  o f  s t r e s s  d e c a y  a t  t h e  shock  f r o n t ,  t h e s e  
s t r e s s e s  becoming  l o w e r  t h a n  o ,  a t  l o w e r  v a l u e s  o f  t h e  r a d i u s  o f  t h e  f r o n t .  
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VARIATIONAL PROBLEMS OF RADIATIVE GAS DYNAMICS IN THE 

PRESENCE OF GAS INJECTION FROM A SURFACE 

N. N. Pilyugin and L. A. Prokopenko UDC 533.6.011 

The radiant heat flux to any part of a body moving with supersonic velocity at M ~ 1 
can be reduced by various methods [i, 2]. In connection with this, it is interesting to study 
ways of reducing heat flow to the frontal part of a body. One effective method here is choos- 
ing the form of the body and its flight path so as to minimize its radiant heating. Several 
studies (see the survey [I]) have examined problems concerning optimization of the form of 
a body in the presence of radiative heat transfer (without injection of gas from the surface), 
given different additional restrictions. 

The studies [2-4] obtained relations for radiant flux to a body with allowance for the 
effect of a screening layer of injected gas during the disintegration of a thermally protec- 
tive coating. These relations were obtained on the basis of an asymptotic solution of the 
equations of radiative gas dynamics. The same relations will be used here to formulate varia- 
tional problems of gas dynamics in the presence of injection of gas from a surface. 

Analysis of the problem shows that it is presently efficient to solve variational prob- 
lems and perform comparative analyses by using an approach in which the first step involves 
employing approximate expressions for the radiative heat-transfer coefficients and pressure 
for the body that are found on the basis of analytic and numerical solutions of the equations 
of radiative gas dynamics. After the solution of the corresponding variational problem in 
the second step, the gas-dynamic parameters and aerodynamic characteristics can be calculated 
more accurately on the basis of established numerical methods of solution with allowance for 
the spectral properties of the gas. 

The thus-obtained preliminary results point the way to practicable methods for solving 
problems involving a reduction in the thermal loads on aircraft by efficiently selecting 
their aerodynamic shapes and the distribution of the gas injection. 

Correlations to Calculate Radiant Fluxes to the Body. Using the approximation of a lo- 
cally uniform plane layer when calculating radiative heat transfer in a shock layer and assum- 
ing the surface of the body to be diffusely reflecting, we have the following for the radiant 
flux to the surface of the body [2]: 

S ' ' qn(t)=~ d~'~v 2 B ~ E 2 ( x . ~ ) d ' ~ v - - B . ~ ( T ~  , 

0 

z c z~ 

S ' ' = -= _ d z ,  % e  k ~ d z  , "c~, s 
0 0 

(1) 

Kiev. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 
49-54, May-June, 1989. Original article submitted December 29, 1987. 
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